Mitochondrial uncoupling protein 3 (UCP3) in skeletal muscle.

نویسندگان

  • N Tsuboyama-Kasaoka
  • O Ezaki
چکیده

Mitochondrial uncoupling protein (UCP), mitochondrial transporters, function as a proton channel and increase thermogenesis. UCP1 is expressed in brown adipose tissues (BAT), UCP2 is widely expressed in multiple tissues, while UCP3 is expressed in skeletal muscle. Thus, UCPs, especially UCP3, in skeletal muscles is a good candidates for prevention of obesity and diabetes. However, the role of UCP3 in skeletal muscle for energy expenditure and obesity has been controversial. There is some evidence that the UCP3 is possibly regulated by energy substrate, such as lipid and glucose. These observations suggest that increased energy substrate entry in muscle results in an increase in UCP3 expression which leads to an increase in energy expenditure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria.

Western blots detected uncoupling protein 3 (UCP3) in skeletal-muscle mitochondria from wild-type but not UCP3 knock-out mice. Calibration with purified recombinant UCP3 showed that mouse and rat skeletal muscle contained 0.14 microg of UCP3/mg of mitochondrial protein. This very low UCP3 content is 200-700-fold less than the concentration of UCP1 in brown-adipose-tissue mitochondria from warm-...

متن کامل

The uncoupling protein-3 gene is transcribed from tissue-specific promoters in humans but not in rodents.

Uncoupling protein-3 (UCP3), a mitochondrial membrane transporter, is a candidate effector of thermogenesis. Even though mice with targeted disruption of the UCP3 gene are not obese, indirect evidence suggests that this protein contributes to the control of energy expenditure in humans. We therefore characterized the human UCP3 gene and compared it with its rodent homologues with respect to tis...

متن کامل

Uncoupling protein-3 content is decreased in peripheral skeletal muscle of patients with COPD.

Mechanical efficiency is reduced in patients with chronic obstructive pulmonary disease (COPD). Furthermore, altered fibre-type distribution and metabolic profile has been observed in peripheral skeletal muscle of COPD patients. Since skeletal muscular uncoupling protein-3 (UCP3) has been implicated in the regulation of energy metabolism, the aim of this study was to assess UCP3 in peripheral s...

متن کامل

Exercise induces an increase in muscle UCP3 as a component of the increase in mitochondrial biogenesis.

Previous studies have indicated that exercise acutely induces large increases in uncoupling protein-3 (UCP3) in skeletal muscle, whereas endurance training results in marked decreases in muscle UCP3. Because UCP3 expression appears to be regulated by the same mechanism as other mitochondrial constituents, it seemed unlikely that exercise would result in such large and divergent changes in mitoc...

متن کامل

Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo.

Phosphocreatine (PCr) resynthesis rate following intense anoxic contraction can be used as a sensitive index of in vivo mitochondrial function. We examined the effect of a diet-induced increase in uncoupling protein 3 (UCP3) expression on postexercise PCr resynthesis in skeletal muscle. Nine healthy male volunteers undertook 20 one-legged maximal voluntary contractions with limb blood flow occl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2001